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The dynamics of stretched vortices 
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The dynamics of vortices subject to stretching by a uniform plane straining flow is 
studied asymptotically and by means of a new class of exact solutions. The 
asymptotic analysis treats the stretched Burger’s vortex sheet for strain rates much 
greater than the gradient of the sheet strength. It is found that portions of the sheet 
where the strength density is sufficiently large compared to (viscosity x strain rate)t 
will collapse to form concentrated vortices. The exact solutions describe uniform 
vortices of elliptical cross-section in inviscid fluid subject to stretching parallel to their 
axes. These solutions complement the description of vortex collapse found by 
asymptotic methods. The relevance of these results stems from the prevalence of 
vortex structures subject to strain in turbulent flows. 

1. Introduction 
A problem of great current interest in fluid mechanics is to describe and interpret 

the evolution of vortical structures in the mixing layer (Browand & Winant 1974; 
Brown & Roshko 1974; Browand & Weidman 1976; Roshko 1976; Saffman & 
Baker 1979). A descriptive theory of Corcos (Corcos & Sherman 1984; Corcos & Lin 
1984; Lin & Corcos 1984) based on his interpretation of well-known experiments 
(Browand & Winant 1974; Brown & Roshko 1974; Browand & Weidman 1976; 
Roshko 1976) and extensive numerical simulations gives caricatures of the most 
important vortex motions. The basic flow is two-dimensional, consisting of the rollup 
and pairing of large spanwise vortices whose axes are perpendicular to the streamwise 
direction. Figure 1 depicts schematically two neighbouring vortices in an array 
produced by the rollup process. The large spanwise rolls are connected by filaments 
called braids. The braids are subjected to strain produced by the rolls, so that 
spanwise vorticity is withdrawn from the braids and transferred to the rolls. The 
streamlines drawn in figure 1 illustrate graphically this effect of the roll-induced 
strain. 

The basic system of rolls and braids forms a background flow for various secondary 
vortices. The streamwise streaks observed in the braids (Corcos & Sherman 1984; 
Corcos & Lin 1984; Lin & Corcos 1984) are due to arrays of alternating vortices whose 
axes follow the braids in the streamwise direction. These are depicted schematically 
in figure 2. The formation of these secondary vortices is bound up with the 
development of the large spanwise rolls from an initially parallel shear flow. Hence 
an array of secondary vortices has wavelength h comparable to the spacing L between 
rolls produced from Kelvin-Helmholtz instability of parallel shear flow. The strain 
tends to compress secondary vortices into the planes of the braids, but this is resisted 
by viscous diffusion. The thickness of secondary vortices determined by the balance 
between these two opposing effects is 6 = (zv/2y)?,  where v is the kinematic viscosity 
and y is the strain rate. Since the strain in the braids is due to the larger spanwise 
rolls, the strain rate y should be O(AU/L) ,  where AU is the total shear across the 
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FIGURE 1. The r o h p  of spanwise vortices. 

FIQURE 2. The streamwise streaks in the braids. 

mixing layer. From the preceding estimates for the initial dimensions of secondary 
vortices and the magnitude of the strain that acts upon them, we find that their 
aspect ratio a = A / &  is O(Rei), where Re = AUL/v  is the Reynolds number that 
characterizes the basic two-dimensional flow. We see that, for high Reynolds 
numbers, the secondary vortices initially appear as the highly flattened ribbons 
depicted in figure 2. 

Under these conditions, an additional mode of vortex motion may appear. Locally, 
a highly flattened secondary vortex looks like a shear layer whose vortex lines are 
stretched by the strain. If the shear layer is sufficiently strong, it may exhibit 
miniature versions of the same processes observed in the basic two-dimensional flow, 
including the growth of concentrated rolls and their pairwise coalescence. 

In this paper we present an analytical theory for the evolution of secondary vortices 
and their instabilities of the basis of a model due to Corcos and Lin (Corcos & Lin 
1984; Lin & Corcos 1984). In  $2 we give a brief description of their model and the 
results of numerical simulations based upon it. Certain of the simulations demonstrate 
a dramatic collapse of initially flattened secondary vortices into concentrated circular 
vortices. We review in detail their qualitative account of the collapse mechanism. In  
$ 3  we formulate the model of Corcos and Lin in the language of vortex dynamics. 
From this point of view, the model describes the dynamics of parallel vortices 
stretched by a uniform plane strain. In  $4 we present the theory of stretched vortices 
in ideal fluid. This includes an asymptotic theory and a new class of exact solutions. 
Both dramatically demonstrate the collapse mechanism presented qualitatively by 
Corcos and Lin. In  $5 we present a simple heuristic theory of stretched vortices in 
viscous fluid. The essential change from the inviscid case is that  viscous diffusion of 
vorticity creates a limited resistance against the collapse. We apply the viscous theory 
to the collapse of secondary vortices, and determine a criterion for the collapse of 
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FIQURE 3. The physical situation of the model problem. 

initially flattened secondary vortices into concentated vortices. The equations of the 
heuristic theory used here are ill-posed with respect to certain classes of initial 
conditions. In  $6  we present the asymptotic analysis that yields the heuristic theory 
a t  leading order plus higher-order corrections that restore the well-posedness. In $7 
we use the extended theory to discuss the Kelvin-Helmholtz instability of the 
Burgers vortex sheet. In  $8 we present an asymptotic theory of the strong, nearly 
circular vortices that appear in the final stage of the collapse process. The solutions 
found here are closely related to the well-known Burger’s vortex. 

2. The model and its phenomenology 
In the advanced stages of the basic two-dimensional rollup induced by Kelvin- 

Helmholtz instability, most of the spanwise vorticity is depleted from the centres of 
the braids and the axes of the remaining secondary vortices are all aligned in the 
principal direction of the strain created by the large spanwise rolls. Accordingly, 
Corcos & Lin (1984) and Lin & Corcos (1984) study the dynamics of vortices whose 
axes are straight lines parallel to the principal axis of a uniform plane straining flow. 
Figure 3 depicts the physical situation of the model problem. The streamlines drawn 
in the (y,z)-plane are those of the uniform plane straining flow. These streamlines 
are the same in each plane parallel to the (y, z)-plane. The vortices are all aligned in 
the z-direction, which corresponds to the principal axis of the uniform plane strain. 
We see that the vortices are continually stretched by the action of the strain. In  this 
sense, we are studying the dynamics of stretched vortices. 

Corcos and Lin study the evolution of vortices in the model problem by numerical 
integration of the Navier-Stokes equations. For a simulation of secondary vortices, 
the initial condition is taken to be an array of alternating vortices with wavelength 
h and circulation r p e r  vortex. Figure 4(a) shows a typical initial configuration. The 
subsequent evolution is determined by the values of the aspect ratio a = h/S and the 
non-dimensionalized circulation r* = r / 8 y h 2 .  Since the main interest is in high- 
Reynolds-number flows, the aspect ratio is typically large. The numerical computa- 
tions show that, for a given value of the aspect ratio, an array of alternating vortices 
with sufficiently weak circulation will undergo slow decay due to interdiffusion of 
positive and negative vorticity, whereas sufficiently strong vortices will buckle and 
collapse into concentrated circular vortices of radius O(6). Figures 4(a-c) are a 
sequence of snapshots from a numerical simulation showing how the vorticity 
contours evolve during such a collapse. 

From the examination of their numerical results, Corcos and Lin propose a 
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FIGURE 4. The collapse of secondary vortices. 

qualitative theory of the collapse. As is evident from figures 4(a, b ) ,  the flattened 
secondary vortices tend to rotate about their centres by virtue of their self-induced 
velocity. In  turn, the self-induced velocity field in the neighbourhood of any given 
vortex tends to rotate with the vortex. When the velocity due to the rotated and 
deformed vortices is combined with the vertical component of the strain the result 
is a net velocity in the vicinity of each vortex which is primarily spanwise and directed 
toward the centre of the vortex. Figure 5 gives a graphical illustration of this 
mechanism for the focusing of secondary vortices. If the vortices are strong enough, 
the focusing effect will not be overcome by viscous diffusion, and collapse will result. 

In  order to simulate the shear instabilities of highly flattened secondary vortices, 
the base flow is taken to be a uniform Burgers vortex sheet (Batchelor 1967) with 
Reynolds number Re' = AT'&/v, where AT' is the total shear. At high Reynolds 
numbers, the Burgers vortex sheet is unstable to the formation of periodic arrays 
of rolls, and there arrays are themselves subject to the subharmonic instability that 
results in the pairwise colescence of rolls. Both rollup and pairing are observed in 
the numerical simulations. 
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FIQURE 5. The mechanism for collapse of secondary vortices. 

3. Vortex-dynamics formulation of the model 
We present the governing equations of vortices whose axes are all parallel to the 

principal axis of a uniform plane strain. Referring to the physical situation depicted 
in figure 3, we take the vorticity field to be 

0 = w(x, y, t )L ,  (3.1) 

u, = -yyY+yzL. (3.2) 

and the velocity field of the uniform plane strain to be 

The vorticity w(x, y, t) satisfies the transport equation 

(3.3) 

are the x- and y-components of velocity induced by the vorticity. Equation (3.3) with 
u and v given by (3.4) and (3.5) constitutes an integro-differential equation for the 
evolution of the vorticity w(x, y, t). The physical content of this evolution equation 
is that the vorticity is convected by the sum of its self-induced velocity and the inward 
(y) component of the strain, and diffused by the action of the viscosity. 

We present a related formulation that describes stretched vortex sheets in ideal 
fluid. In this case, the vorticity is given by 

w(x, Y, t) = 4x9 t )  S(Y - 7 h  4). (3.6) 

In (3.6), y(x,t) gives the elevation of the vortex sheet and a(x,t)  is surface vortex 
density measured with respect to x: the circulation between x and x+ dx is CT(Z, t )  dx. 
The evolution equations for 7 and CT are 

7t+u?l,-v+y7 = 0, (3.7) 

(3.8) CTt + (ua), = 0, 

where u and v are given by the principal-value integrals 

u' dx', u =  -- 7-7' 
2.n S" - , (x - x')2 + (7 - 7')2 

x-x' 
v = -  CT' dx' 

(3.9) 

(3.10) 
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FIQURE 6. Linear instability of a strained vortex sheet. 

In (3 .9)  and (3 .10) ,  7' and cr' denote the values of 7 and u a t  x = x'. The physical 
content of (3 .7)  is that the velocity of a material point a t  position xft+q(x,t)9 on 
the vortex sheet is the resultant of the y-component of strain, given by - yy9, and 
the self-induced velocity, given by uft+vg. The values of u and v given in ( 3 . 9 )  and 
(3 .10)  are obtained by substituting the surface &function (3 .6)  for the vorticity into 
(3 .4)  and (3 .5)  and setting y = ~ ( x ,  t ) .  The physical content of (3 .8)  is that the surface 
vortex density is a locally conserved quantity. 

4. Stretched vortices in ideal fluid 
We analyse the collapse of stretched vortices in ideal fluid. We begin with an 

asymptotic analysis of vortex sheets. A class of similarity solutions to the equations 
of the asymptotic theory give concrete examples of the vortex-sheet collapse process. 
These similarity solutions of the asymptotic equations correspond to a new class of 
exact solutions to the Euler equations. These are discussed in detail. The combined 
results of asymptotic analysis plus exact solutions give a quantitative description of 
the Corcos-Lin collapse mechanism discussed in $2. 

We inspect the effect of the strain upon the Kelvin-Helmholtz instability of a 
uniform vortex layer of strength g = go. From a linearized analysis of the stretched 
vortex-sheet equations ( 3 . 7 ) - ( 3 . 1 0 ) ,  we find that there is a mode of temporal 

(4 .1)  
instability with u = eat cos kx, 

where the growth rate a is related to the wavenumber k by 

a 

Y 2  

For this mode, material points drift away from the x-axis along straight lines with 
slope 

as illustrated in figure 6. In the short-wave limit cr,k/y+ co (4 .2)  and (4 .3)  have the 
asymptotic forms 

u-&r,k ,  m -  1.  (4 .4)  

These are the known results for the free vortex sheet without strain. Short-wave 
disturbances penetrate only a small distance vertically, and so they do not feel the 
strain. In the long-wave limit a , k / y + O  we have 

a l g i k 2  g o  k 

Y 4 Y 2  Y 
N -- , m - - .  - (4.5) 

We see that the strain has a stabilizing effect on long waves in that the dimensionless 
growth rate a/y is reduced from O(u,k/y) to O(ui k2/y2). Nevertheless, instability 
is not eliminated entirely, and the fact that m - g , k / y  is small tells why. The 
compressing effect of the strain kills the vertical drift of vortices, but does not prevent 
a horizontal drift that serves to focus the strength density. 
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Variable U X t 

Unit 

It is possible to develop a nonlinear theory for the focusing of the strength density 
in a long-wave limit where the gradient of the strength density u, is much less than 
the strain rate y .  That is 

u, * y .  

We adopt a non-dimensionalization of the stretched vortex-sheet equations (3.7) and 
(3.8) with the units of the variables as given in table 1 .  In table 1 uo is a typical value 
for the strength density of the initial conditions, and E 4 1. It is easily seen that the 
choice of scales in table 1 is consistent with the condition (4.6). 

(4.6) 

The dimensionless equations are 

where 

€2(7t+Uy,)-V+p=0, 

ut = (UB),  = 0, 

In the limit e+O these reduce to 

where 

(4.10) 

7 =  v, (4.11) 

(4.12) ut + (Uu) ,  = 0, 

(4.13) 

(4.14) 

Equation (4.11) says that the vortex layer achieves the elevation 7 at which the 
vertical component V of its self-induced velocity balances the strain. It is not a 
perfectly static equilibrium. From (4.13) we see that the distortion of the vortex layer 
from the horizontal gives rise to a horizontal component of velocity U ,  which, 
according to (4.12), convects the vortices. From (4.14), we see that the change in u 
produces a change in V and forces a readjustment of the elevation 7. 

The system (4.11)-(4.14) can be reduced to a single equation for u(x, t ) .  Combining 
(4.11), (4.13) and (4.14), we write the horizontal transport velocity U as a functional 

(TI dx’, 
of B. The result is 

where f denotes the Hilbert transform off, given by 

(4.15) 

(4.16) 
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In  the form (4.15), U [ u ]  appears to  be a non-local functional of u, but in fact we have 

U[U] = $m, (4.17) 

for any smooth u(x)  with a Fourier-series or Fourier-transform representation. The 
calculation leading from (4.15) to (4.17) is recorded in Appendix A. Here, we simply 
observe that, with U given by (4.17), the conservation law (4.11) becomes 

ut +a(u2uz)z = 0. (4.18) 

Equation (4.18) is a backwards heat equation for u which predicts the focusing of 
vortex concentrations. The nature of the focusing is easy to  see from (4.17). Vortices 
are convected in the direction of increasing vortex density. There are similarity 
solutions to (4.18) which represent isolated segments of stretched vortex sheets 
undergoing collapse. In  the original dimensional variables, these solutions are given 

in 1x1 < a( t ) ,  and u(x, t )  = 0 in 1x1 > a(t) ,  where 

(4.19) 

(4.20) 

I n  these formulas, r is the total circulation of the segment, a, is its initial half-length 
at time t = 0, and a(t)  is its half-length a t  time t .  We see from (4.20) that  the segment 
collapses to a point vortex in time t, given by 

(4.21) 

From (4.11) and (4.14) we find that the interfacial elevation corresponding to the 
elliptical strength density profile (4.19) is a linear function of x, given by 

(4.22) 

Figures 7 (a,  b) are sequences of snapshots depicting the evolutions of u and 7 as given 
by the similarity solution. The condition for the validity of the asymptotic theory 
is that  u, < y .  Applying this criterion to  the similarity solutions, we find that it is 
valid only when r / y a 2 ( t )  Q 1. We see from (4.22) that  this implies small values for 
the slope of the vortex sheet with respect to the horizontal. 

There are exact solutions of the Euler equations directly related to the similarity 
solutions of the asymptotic equation (4.18). These exact solutions correspond to 
uniform elliptical vortices undergoing rotation, deformation and compression in a 
uniform plane strain which is parallel to the vortex axis. Figure 8 shows the physical 
situation we are considering. The elliptical cylinder of uniform vorticity is centred 
about the z-axis. The inward y component of the strain is - yyy. The major and minor 
axes of the ellipse are denoted by a and b. The angle of orientation of the major axis 
with respect to tfhe x-axis is 8. a,  b and 8 are time-dependent quantities that  evolve 
according to the equations 

(4.23) ci = - (y  sin2 8)  a ,  

6 = - (y  C O S ~  8) b, (4.24) 

r --___ Y a2 + b2 sin 28, 8 =  
x(a+b)2 2a2-b2 

(4.25) 

where r is the total circulation around the ellipse. 
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FIGURE 7. Vortex-sheet collapse according to the inviscid theory. 
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FIGURE 8. A strained elliptical vortex. 
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The existence of such solutions is based on the fact that the component 

up = u,P+v,p 

of velocity in the (x, y)-plane due to the combined influences of the vortex and the 
strain is a linear function of x = xP+ yy inside the ellipse. up is given by 

up = ~ ( a ,  b,  e) X, 

where the matrix 
r O a  0 0  

U(a,b,6) - nab(a+b) 

In (4.27), the standard rotation matrix 

(4.26) 

(4.27) 

(4.28) 

The result (4.26) is obtained from a single potential-theory calculation outlined in 
Lamb (1932). The first term of the matrix (4.27) represents the velocity induced by 
the vortex. The self-induced velocity inside a rotated ellipse may be obtained by 
rotating the velocity field inside of the 8 = 0 ellipse. This accounts for the presence 
of rotation matrices R(8) and R( - 8). The second term in (4.27) represents the strain. 
The consequence of (4.26) is that  material lines inside the vortex that are parallel 
to the z-axis are mapped from their initial positions to subsequent positions at a later 
time by a linear transformation. It follows that a uniform elliptical vortex will remain 
uniform and elliptical for all time. The evolution of the vortex is fully specified if the 
ellipse parameters a ,  b ,  8 are determined as functions of time. Starting from the 
formula (4.26) for the component up of velocity in the (x,y)-plane, one can 
straightforwardly deduce the equations (4.23)-(4.25) for a ,  b and 8. 

The special case of (4.23)-(4.25) relevant to vortex sheets is b = 0. In  this case, the 
elliptical vortex degenerates into a flat vortex sheet with strength density profile 

(4.29) 

where s is distance from the centre of the sheet. The half-length a of the sheet and 
its orientation angle 6 satisfy the equations 

u = -(ysin28)a, (4.30) 

The asymptotic theory treats the collapse of sheets with E = r / y a ;  < 1.  To recover 
the results of the asymptotic theory from the exact equations (4.30) and (4.31), we 
measure a in units of T/Eya,, 8 in units of E ,  and time in units of 1 / ~ * y .  The 
dimensionless equations are 

(4.32) e2u = - (sin2 €8) a ,  

(4.33) 

In  the limit E + O  these equations become 

(4.34) 
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The solution with a(0) = 1 is 

a = (1 -$)', (4.35) 

which we recognize as the dimensionless version of (4.20). 
Figure 7(c) illustrates the physics responsible for the collapse of a lightly elongated 

elliptical vortex. The arrows perpendicular to the major axis represent the vortex- 
induced velocity along the major axis. The vertical arrows represent the component 
of strain in the (x, y)-plane. We see that the sum of vortex- and strain-induced 
velocities is primarily spanwise and directed toward the centre of the vortex, causing 
it to collapse in the manner described by Corcos and Lin. 

5. Stretched vortices in viscous fluid 
The viscous vorticity equation (3.3) has a solution 

w = u(+-Jexp( -$yz), 

which represents a vortex layer with thickness 6 = (nv /2y) t  and circulation u per unit 
distance in the spanwise (z) direction. This solution is the well-known Burgers vortex 
sheet. The thickness 6 is determined by a balance between the strain, which tends 
to compress the vortex layer, and the viscous diffusion, which tends to disperse it. 

If the circulation per unit spanwise length 

is slowly varying in the sense that ux + y ,  the vorticity distribution remains nearly 
Gaussian in the y direction, but its centre of mass 

I r m  

deflects from the x-axis. Accordingly, the vorticity field is given to leading order by 

(5.4) 

The dynamics of the vortex layer is determined by the evolution of ~ ( x ,  t )  and ~ ( z ,  t ) .  
We begin by proposing heuristic equations for v and 9 based upon our knowledge 

of the inviscid case. These equations are 

ut+((-&u~-v)ux) X = 0, (5 .5)  

Equation (5.5) is the viscous analogue of the inviscid transport equation (4.18). 
Equation (5 .5)  says that u is a locally conserved quantity whose flux is 

The first term in (5.7) represents the flux due to transport of vortices by bulk fluid 
motion, as in (4.18). The second term is the flux due to viscous diffusion. Equation 
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(5.6)  states that the centreline of the vortex layer seeks the elevation at which the 
vertical components of the vortex- and strain-induced velocities balance. This 
remains the same as in the inviscid theory. 

We will show in $6 that (5 .5)  and (5 .6)  are in fact the leading-order equations for 
a and 7 when cr, 4 y and u 2 / v y  = O(1). The first of these conditions corresponds to 
the long-wave limit evoked in the inviscid theory. The second condition corresponds 
to a balance between the fluxes of vorticity due to bulk fluid motion and viscous 
diffusion. In the remainder of this section we investigate the collapse of secondary 
vortices as described by (5 .5)  and (5 .6) .  

Equation (5 .5)  may be viewed as a nonlinear diffusion equation with diffusivity 

1 
D(a)  = v---8.  

4Y 
1-5-81 

If In1 > 2(vy) i ,  (5.9) 

the diffusivity is negative and we expect that intervals of a vortex layer where this 
condition is satisfied will collapse to produce concentrated vortices. 

The mechanics of the collapse process may be understood by studying the evolution 
of a(x,t) from specific initial conditions. First we consider the evolution of a(x,t) 
from an initial condition cr = a(x,O) with la(x,O)l < 2(vy)? inside of an interval 
X- < x < X ,  and I ~ ( x ,  0) I = 2(vy)4 outside. For such initial conditions, we have 
D ( a )  > 0 in the interior of X- < x < X ,  and D ( a )  = 0 in the exterior. We require 
a(x ,  0 )  to be continuous at x = X ,  and the derivative a,(x, 0 )  to have finite non-zero 
left- and right-hand limits a t  x = 3- and x = X,. A typical example of such an initial 
condition is depicted by the thin curve in figure 9 (a ) .  Using some basic facts about 
initial-value problems for nonlinear heat equations, we can describe certain features 
of the subsequent evolution. A t  any t > 0 for which the solution exists, there 
is an interval x-(t) < x < x+(t) so that I a(x, t )  I < 2(vy)4 inside this interval and 
I cr(x, t )  I = 2(vy)4 outside this interval. The endpoints x-(t) and x,(t) move to the left 
and right at  speeds proportional to the derivatives aX(x t ( t ) ,  t )  and cr,(x+(t), t ) .  Since 
we expect diffusion to diminish the gradient crx, the expansion of the interval 
x-(t) < x < x+(t) slows down with time. The thicker curve in figure 9 ( b )  represents 
the solution at time t > 0 which evolved from the initial condition at t = 0 represented 
by the thinner curve. 

We now consider the evolution of ~ ( x ,  t )  from an initial condition which differs from 
the previous case in that la(x, 0)l > 2(vy)4 inside X -  < x < X,. The diffusivity D ( a )  
is negative in X -  < x < X,. The initial-value problem consisting of (5 .5)  subject to 
such an initial condition is ill-posed. Nevertheless, we can construct special solutions 
with la(x, t )  I > 2(vy)i which represent vortex-sheet collapse. These are obtained from 
time reversals of solutions to the time-reversed equations crt = - ( D ( a )  aJs subject 
to the same class of initial data. The time-reversed equation represents forward 
diffusion, so i t  evolves highly concentrated initial distributions of a into more-diffuse 
distributions. The time reversals of such evolutions give the required examples of 
collapse. The circulation excess & inside the collapsing interval x-(t) < x < x,(t) 
where I ( T I  > 2(vy)4 is defined by 

(5.10) 

This is a conserved quantity. A consequence is that the collapsing distribution must 
steepen as the interval x-(t) < x < z+(t) shrinks, so that the values of the gradient 
a, at x = x-l-(t) and x = x;( t )  are expected to increase with time. As a result, the 
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FIGURE 9. Evolutions of a strained vortex sheet in ideal fluid. 

collapse accelerates with time. A collapse of a vortex sheet into a concentrated vortex, 
if that indeed happens, takes place in a finite time. Figure 9 ( b )  depicts an example 
of such a collapse process. The thinner curve represents the initial distribution and 
the thicker curve the collapsed distribution at a later time. 

On the basis of the special solutions discussed so far, we present a conjecture of 
how a periodic array of alternating vortices with wavelength h and circulation r p e r  
vortex undergoes collapse. The lightened curve in figure 9 ( c )  represents the initial 

(5.1 1)  
condition 

u(z,O) = -sin--z, 

which gives a specific example of such an array. There are regions where lul > 2(vy)i  

(5.12) 
if 

x r  27~ 
A h  

r 2  
- > - (vy)k  
A n :  

An alternative form of (5.12) is 

(5.13) 

where r* = r / 8 y h 2  is the non-dimensional circulation and a = h / y  is the aspect 
ratio. 

Equation (5.12) is a criterion for collapse in an array with 

(5.14) 

We assume that the parameters A, r, v and y satisfy (5.12) and (5.13). 
The thick curve in figure 9 (c )  shows the conjectured solution for a(%, t) a t  a time 

t > 0. The intervals where I a1 < 2(vy)i  grow, but we expect this growth is slower than 
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Variable w U 2, X t 
cro 1 

Units - UO 6 0  - 

v “V 
TABLE 2 

the collapse of regions where 1cr1 > 2(vy)4. As a result, the collapse process results 
in concentrated vortices surrounded by plateaus where cr has uniform value + 2( vy)j 
or -2(@y)k  The collapsed vortices have strength equal to the circulation excess 
of the initial distribution. This circulation excess is numerically equal to the area of 
the hatched region in figure 9 (c). I n  between two plateaus of opposite sign, cr changes 
continuously from - 2(vy) i  to + 2(vy)+ in a region which corresponds to interdiffusion 
of positive and negative strength density. The growth of these regions means that 
the plateaus are eventually consumed by the interdiffusion process. 

6. The symptotic theory 
The nonlinear diffusion equation (5 .5)  that governs the vortex-layer strength 

cr(x,t) to leading order is ill-posed for initial conditions cr(x,O) whose maximum 
absolute value exceeds 2(vy)4. Solutions evolved from such initial data develop 
singularities in finite time. I n  regions where I ~ ( x ,  t )  1 > 2(vy)+, the negative diffusivity 
D(cr) = v-cr2/4y causes perturbations in cr with the smallest spatial scales grow the 
fastest. None of these pathological behaviours are expected for real flows in viscous 
fluid. We resolve these difficulties by a careful asymptotic analysis of the full viscous 
vorticity equations (3 .3)  which yields the nonlinear diffusion equation (5 .5)  a t  leading 
order, together with higher-order corrections which act to stabilize fluctuations in cr 
with small spatial scales. To single out the asymptotic limit crx 4 y ,  a2 /vy  = 0(1), 
we adopt a non-dimensionalization of the viscous vorticity equation (3.3) with the 
units of the variables as given in table 2.  In  table 2 0 . O  is a typical value of the 
circulation per unit length of the initial conditions and e 4 1 .  The units of x and t 
are the same as in the inviscid theory of $4. The unit of y is essentially the thickness 
of the Burgers vortex sheet. A vortex layer with circulation cro per unit length 
generates velocities of the same order. That is why u and v are measured in units of 
go. The unit of vorticity is the shear cro divided by the vortex-layer thickness. 

The dimensionless vorticity equation is 

where 

In  (6.1)-(6.3) p2 = vy /ao2  is the non-dimensional viscosity. In  this analysis p is 
assumed to be O(1).  

We present the asymptotic analysis of (6.1)-(6.3). We consider solutions of the 
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vorticity equation which represent shear layers whose circulation per unit spanwise 

(6.4) 
length m 

4 x 9  t )  = J w ( x ,  Y, t )  dY 
- W  

is finite. The object of this analysis is to determine the equation of evolution for u ( x ,  t ) .  
This is the strategy of the analysis : We attempt to construct an asymptotic solution 

w - WO+€:W'+€%J2+ ... (6.5) 

of the vorticity equation (6.1) with a prescribed value of a(x,  t ) .  This of course cannot 
be done for arbitrary a(x ,  t ) ,  but only for those a ( x ,  t )  which obey a certain evolution 
equation 

Thefunctionals f$[v] aredetermined from the solvability conditionsofthe perturbation 
equations for the 3. We see that carrying out the analysis to  higher order extends 
the asymptotic solution's domain of validity in time. 

The first step in implementing the above strategy is to obtain asymptotic 
expansions of the integrals (6.2) and (6.3) for u and v in the limit E + O .  Straightforward 
expansions of the integrands in powers of lead to divergent integrals. The crucial 
idea is to apply contour integration to the x' variable. The final .results of the 
asymptotic evaluations are 

(6.6) Ut = (f(€)) [U] = f"U]+€ff[U]+€2f2[u]+ .... 

W -'s {sgn (y- y') w'+ ep(y- y') o?;-vpz sgn (y- y') (y- Y ' ) ~  w i z  + ... 1 dy', 
2 -m 

Here w' denotes w ( x ,  y', t ) ,  and f ( x )  denotes the Hilbert transform of f(x) given by 
(4.15). The calculations leading to (6.7) and (6.8) are recorded in Appendix B. 

From (6.1), and (6.8), we can determine the perturbation equations for the 3. The 
equation for wo is 

where 

w;u+((y-~)wo) Y = 0, 

(6.10) 

From (6.10), we see that vo is independent of y. Hence the unique solution of (6.10) 

for wo with 1 W 

wO'dy' = u is 
J-00 

U wo = - (2rc), exp [ - ; (Y - 31. (6.11) 

With this solution for wo, we find from (6.10) that 

00 = +a. (6.12) 

We recognize (6.11) and (6.12) as the dimensionless forms of (5.4) and (5.6) which 
describe a Burgers vortex sheet whose centreline deflects from the x-axis owing to 
the inhomogeneities in u(x, t ) .  

Given the leading-order solution for wo in terms of u, we attempt to solve the - 
higher-order equations for d', j 2 1 .  Since wo dy = u, we seek solutions for 3, 
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-a, -a, 

j B 1 ,  with [ 3 d y  = 0 in order to have [ wdy = a overall. This can be achieved 
J --a, J - m  

only if certain solvability conditions are satisfied. The solvability conditions are 
determined as follows : 

By integrating equations (6.1) with respect to y from - 00 to + CQ, we find 

at + ( F - P ~ ~ , ) ,  = 0, (6.13) 

where (6.14) 

is the net flux of vorticity in the spanwise direction due to the spanwise velocity u. 
Inserting into (6.14) the asymptotic expansion for u given in (6.7), we find a 
convenient asymptotic expansion for F :  

- $Jim r* (y - 9') 4; w dy' dy 

+i€pzJm J m  sgn (y - y') (y - Y')~ w;, w dy' dy + . . . . (6.15) 
- w  --a, 

Comparing (6.6) and (6.13), we see that the functional (f(e)) [a] must satisfy 

(A€))  [a] + (F-P2U,), = 0. (6.16) 

Equations for thefj[a] are obtained by expanding (6.16) in powers of E .  From (6.16) 
and (6.18), we find that the equation forf0[a] is 

(6.17) I fO"al + ( P - y 2 a , ) ,  = 0, 

P E gP la J:-a, (y - y/) 4:) wo dy' dy. 
--a, 

Equation (6.17) turns out to be the solvability condition of the perturbation equation 
for w2. In general, the equation for f n [a]  is the solvability condition of the 
perturbation equation for wnf2. 

Since wo is known in terms of a through (6.11), P can be computed explicitly as 

(6.18) 
a functional of a. We find Fo = iu2aZ. 

The details of the calculation are recorded in appendix C. With this result for FO, 
we find that fO[a] has the value 

fO"al = ((P2-ia21 a,),. (6.19) 

1 can be found by carrying out the perturbation The values of the f n [cr ]  for n 
procedure outlined above to higher order. The result for f '[a] is 

(6.20) 

m 

where c = 1 + ;(in)& [ (1 - erF (l/&)) dy z 2.2. (6.21) 
J --a, 

We can now state the main result of the analysis: withfo[cr] andf'[a] given by 
(6.19) and (6.20), the evolution equation for a(x ,  t )  reads 

fit = ( ( P 2 - w ) ~ 2 ) 5 + 2 ( 2 x ) 1  ((a2a,),+c(a(aa,),-aa,4,)),+ ... . (6.22) 
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When E = 0, (6.22) reduces to the dimensionless version of the nonlinear diffusion 
equation (5.5). I n  $ 7  we show that the O(e)  correction term stabilizes perturbations 
in CT with small spatial scales. 

7. Kelvin-Helmholtz waves in the Burgers vortex sheet 
We apply the evolution equation (6.22) to study Kelvin-Helmholtz waves in a 

Burgers vortex sheet. We discuss the linearized stability of the uniform Burgers 
vortex sheet with circulation go per unit length. The uniform steady solution of the 
dimensionless equation (6.22) corresponding to this vortex sheet is CT = 1 .  The 
linearized equation for s = u- 1 is 

St = @'-a) S z z + E , f Z K ~ , , , + o ( E 2 ) ,  (7 .1)  

(7.2) 

= ( a - p 2 ) k 2 - e ~ p I k 1 3 + 0 ( ~ 2 ) .  (7.3) 

lu < B- (7.4) 

where K = (1 +c)/2(2.n); x 0.64. Equation (7.1) possesses spatially periodic solutions 

s = eat cos k x ,  

where the growth rate a is related to the wavenumber k by the dispersion relation 

There are unstable modes with a > 0 if and only if 

Setting p to its value (vy)~/a , ,  we see that (7.4) is identical with the criterion for 
instability (5.9) obtained in the leading-order theory. The instability criterion (7.4) 
may also be expressed in terms of the Reynolds number Re' = C T , ~ / V  which 
characterizes the Burgers vortex sheet. We find that (7.4) is equivalent to 

Re' > (2.n): x 2.51. (7.5) 

If p < + and E = 0, we see from (7.3) that  the growth rate a diverges to + 03 as 
I k I + 00. This is the previously noted failing of the leading-order theory. If p < 4 and 
e 9 0, there is only a finite band of unstable wavenumbers. To study this case, we 

(7.6) 
take 

where m > 0 is O(1).  I n  this limit, the first two terms on the right-hand side of (7.3) 
are both O(e)  and balance each other, but dominate the O(c2)  correction. We have 

p = ' - 1 E K m  
2 2  1 

a = k ~ ( m k ~ - I I c 1 ~ ) + 0 ( ~ ' ) .  (7 .7)  

Figure 10 shows graphs of the dispersion relation (7.7) for various values of m. In  
the case m > 0 the band of unstable wavenumbers is 

IIcI < rn+O(€) .  (7.8) 

The wavenumber of maximum instability is 

k ,  = ~ + O ( E ) .  (7.9) 

To study finite-amplitude Kelvin-Helmholtz waves we take 

CT(x, t )  = 1 + E K S ( X ,  t ) .  (7.10) 

Substituting (7.10) into the evolution equation (6.22) for U ( X ,  t ) ,  we find the equation 

(7 .11)  for s ( x , t )  to be 
St = -$K((m + s) s, -3,,J, + O ( E 2 ) .  
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FIQURE 10. Dispersion relations for Kelvin-Helmholtz waves in the Burgers vortex sheet. 

In  (7.11) the nonlinear term (ss,), balances the linear term (ms,-s",,), in magnitude. 
This is the idea behind the scaling (7.10). 

Time-independent solutions of (7.1 1 )  that are bounded as I zI + co satisfy 

s",, = (m+s)s,. (7.12) 

Equation (7.12) arises in other contexts, such as the theory of deep internal waves 
(Benjamin 1967). Certain exact solutions are known. One solution is 

4m 
1 + m2x2 ' 

s(z) = - 

valid for m < 0. The corresponding solution for ~ ( z )  is 

(7.13) 

(7.14) 

valid for 0 < p - 4 = O(E) .  Equation (7.14) represents an isolated vortex concentration 
in an otherwise uniform shear layer. Figure 11 depicts qualitatively the vorticity 
contours in the (z, y)-plane corresponding to this vortex concentration. The self- 
induced velocity of the vortex rotates it slightly from the horizontal. The surrounding 
uniform shear layer is linearly stable on account of the condition p > ?j. 

Equation (7.12) also possesses periodic solutions with zero mean value. These are 

2k2 
given by 

s(z) = 2k-m - ((2k-m)Z- k2)t cos k z  - 2k, 
(7.15) 
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FIGURE 11. An isolated vortex concentration in the Burgers vortex sheet. 

k = m  

FIGURE 12. Bifurcation diagram. 

where k > max (m,O). Equation (7.15) represents an array of vortex concentrations 
with wavenumber k. The solution (7.13) for an isolated vortex concentration is 
recovered from (7.15) in the limit k+O. The variation of s(z) over one period is given 

by 6s = max s(s)--ins(%) = 4((2k-m)2-k2)a. (7.16) 

The parabola in figure 12 depicts 6s as a function of k for fixed m > 0. We regard figure 
12 as a bifurcation diagram. The branch of steady periodic solutions (7.15) bifurcates 
from the zero-solution a t  m = k. From the linearized stability theory we recall that 
the zero-solution is unstable for 0 < k < m and stable for k > m. This means that 
the bifurcation at k = m is subcritical, with the branch of steady periodic solutions 
unstable in some interval of k-values whose lower bound is m. I n  figure 12, stable 
solution branches are indicated by solid curves and unstable branches by hatched 
curves. 

We can actually show that the steady periodic solutions (7.15) are unstable for all 
k > max (m,O). The stability analysis is based on the fact that  the equation (7.11) 
for s(x ,  t )  has the Lypanov function 

(7.17) 

In  (7.17) s is 2.rc/k-periodic in x. For any 2x/k-periodic solution of (7.11), F[s]  is 
non-increasing with rate of change 

p =  -- ((m + s) s, - 8z.)2 ds.  (7.18) 

A steady solution s = so@) is stable if it  is an isolated minimum of F with respect 
to variations 6s(x) with zero mean value. It is sufficient to consider variations with 
zero mean because (7.1 1) is a conservation law. If in any neighbourhood of so(%) there 
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w U t 
1 - 

V .($ Y 
Y r- 

TABLE 3 

is a test function #(x) with the same mean as so(x) with F[#]  < F[s,], then so(x) is 
an unstable steady solution. 

To establish the instability of the periodic steady solutions (7.18), we consider the 
family of test functions 

1 
$(x; h) = 2k( - 1). (7.19) 

h-(h2--1)COSkX 

For each value of k, # ( x , k )  has zero mean, and (7.19) is identical with the exact 
solution (7.15) for k = (2k-m)/k. Substituting (7.19) into (7.17), we compute 

F[#] = - kh2 + 2(2k - m) h - (3k - 2m). (7.20) 

The right-hand side of (7.20) has a maximum a t  h = (2k-m)/k. It follows that the 
steady periodic solutions (7.15) are unstable. 

8. The collapse of a strongly concentrated vortex stretched by a uniform 
plane strain 

The asymptotic theory of $6 describes only the initial stages of the collapse process, 
in which the vortices may be approximated by vortex sheets slightly deformed from 
the horizontal. As we see from figure 4, the collapsing vortices ultimately become 
highly concentrated and nearly circular. We present an asymptotic theory that 
describes the collapse of a highly concentrated, nearly circular vortex of circulation 
r which is stretched by a uniform plane strain y. 

Table 3 indicates the appropriate units of the variables for this analysis. The choice 
of (v/y)t as the lengthscale gives a balance between diffusive and convective vorticity 
fluxes. The units of vorticity w and vortex-induced velocity u follow directly from 
the facts that  the vortex has circulation r and core radius (v/y)i .  The radical 
component 

wo(r,  t )  = w(r ,  8, t )  d8 r 
of the vorticity distribution undergoes significant relative changes in time l/y. This 
fixes l /y  as the unit of time. I n  the units of table 3, the vorticity equation (3.3) reads 

wt + V*((Re” u- yy) w )  = Aw, (8.1) 

r Re“ = - 
V 

is the Reynolds number of the vortex. 
At high Reynolds numbers, it is possible to have a vortex which is nearly 

axisymmetric. The compression from the strain induces only a slight deformation if 
the vortex is strong. Accordingly, we seek the vorticity distribution in the form 

, 
1 

w = w0(r,  t )  + - d ( r ,  Re“ 8, t ,  Re”), (8.3) 
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where ( r ,8 )  are polar coordinates of the plane and wl(r ,  8,  t ,  Re”) d8 = 0. The r 
vortex-induced velocity corresponding to (8.3) has the form 

u = (!j:r’uo(r’, t )  dr’ 8+---u1(r, 1 8, t ,  Re”). ) Re” 

The leading term in (8.4) is the tangential velocity field generated by the axisymmetric 
component wo(r,  t )  of the vorticity distribution. 

We derive an evolution equation for wo(r,  t ) .  We substitute (8.3) and (8.4) into the 
vorticity equation (8.1) and integrate the resulting expression over the disk of radius 
r .  We obtain 

j:r‘ug(r’, t )  dr’ + F(r,  t )  = (8.5) 

where 4 , .  

Here R = cos 8 9 + sin 89 is the unit normal of the circle about the origin with radius 
r. We applied the divergence theorem to obtain the second line of (8.6) from the first. 

The vortex-induced velocity u is divergence-free. Hence ul(r,  8,  t ,  Re”)*iid8 = 0, r 
and the expression for F reduces to 

1 2= 
F = -r2woGlo sin28d8+0 = - + r 2 , ” + 0 ( L )  Re” ‘ (8.7) 

Here we set y = rs in8 and 9.R = sin8 to obtain this result. Substituting the value 
(8.7) for F into (8.5) and differentiating the result with respect to r ,  we obtain the 
equation for wo(r,  t )  : 

To leading order (8.8) is identical with the equation governing an axisymmetric 
vortex which is stretched by a uniform axisymmetric strain (Batchelor 1967). 

Equation (8.8) possesses a family of similarity solutions, given by 

, = - e-r2/4a2 a2 E 1 + (ui- 1)  e-t, 
1 

4na2 

where a, is an arbitrary positive constant. On restoring the original dimensional 
variables, this solution reads 

(8.10) 

Equations (8.10) represent a columnar vortex with a Gaussian distribution of 
vorticity in its core. The core radius R(t) decays exponentially from its initial value 
Ro to its equilibrium value (v/r)i, which is the core radius of the well-known steady 
Burger’s vortex. 
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Appendix A. Evaluation of U[a]  
We show that 

Assume that a(x) has a Fourier integral representation 

m 

a(x) = s ( k )  eikz dk. 
-m 

We interpret the Fourier integral as a sum 

I a(z)  = a+(x)+a-(x), 

1 r m  Po 1 

a+(x) = J s(k)eikZdk, a-(x) = J s(k)eikxdk.) 
0 -m 

a*(x) are analytic functions of x in the upper and lower half-planes respectively. 
a* (2) + O  as Im x + f 00. Given the representation (A 3) of a as the sum of upper and 
lower analytic functions a+(x) and a-(x), we find by use of the residue theorem that 
the Hilbert transform of a(x)  is given by 

m 
+(x) = - ‘I - a(x’)dx’ = -i(a+(x)-a-(x)). 

7t -,X-X’ 

Substituting into (A 1)  the value of +(x) given in (A 3), we find 

a-f - a- a+’-a+ a-’-a- 

(x‘-x)2 (2’ - X)Z (x‘ - x)2 
}dx’. (A 5) a+‘- a-’+a- - a+ 

We apply the residue theorem to each of the terms on the right-hand side of (A 5 )  
to obtain 

u = a(a+a~+a,u-+a-a,++a+a,) 

= Q(a+2+a-2+2fT+a-), = +((a+ +a-)2), 

= *(a”), = @a),. (A 6) 

Appendix B. Asymptotic evaluation of vortex-induced velocities 
We show how the asymptotic expansions (6.7) and (6.8) of the integrals (6.2) and 

(6.3) are derived. We demonstrate the technique on (6.2). Equation (6.2) can be 
written as 

where w+(x‘, y’, t )  +w-(x‘, y’, t )  is the decomposition of w into components W *  that are 
analytic in the upper and lower halves of the x’ plane with w* + O  as Im x’+ f CO. 

Evaluating the residues at the poles x’ = x*iep I y- y‘I of the integrand in (B 1) gives 

1 fa, 
sgn (y - y’) {w+(x + icp I y - y’ 1, y’, t )  + w -(x - iep 1 y - y’ I, y’, t ) }  dy’. .= -d - m  
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Expanding the integrand of (B 2) in powers of e gives 
00 

u - -‘I {sgn(y-y’)(w+’+w-’)+i€p(y-y’)(w+’-o-’), 
2 -00 

275 

-k2p  2sgn(y-y’)(y-y’)2(w+’+w-’),,+ ...) dy’. (B 3) 

Here wf’ denotes w*(x,y‘,t). In  (B 3) the sum w+’+w-’  is just 0’. The difference 
w + ‘ - w - ‘  is related to w by 

Hence (I3 3) becomes 

{sgn (y - y’) 0’- ep(y- y’) d,,-;e2p2 sgn (y- y’) ( y - ~ ’ ) ~  w;, + . . .) dy, 
.. 

which is the result (6.7). 

Appendix C. The flux of vorticity due to spanwise velocity 
In (6.17) we found that to leading order the flux of vorticity due to spanwise 

velocity is given by 

F o  = + p I U J  (y - y’) 13;’ w0 dy’ dy, 
-03 -00 

where 

is the leading-order vorticity distribution. We substitute (C 2) into (C 1) and evaluate 
FO as a functional of U.  We obtain 

(C 3) 
A FJ = $($BZ-U6),. 

To evaluate the right-hand side of (C 3) we use the decomposition u = U +  + U - ,  where 
U* are analytic in the upper and lower halves of the x‘ plane, with u*+O as 
Im x’ + 00. Using the property U +  - U-  = i6, we find 

(C 4) 
fi 

; * 2 - ( T f 3  = -i(q+ - - - ) 2 + @ + 2 + g - - 2  = $((.+ + g - ) 2  = $2. 

Hence (C 3) becomes 

which is the result stated in (6.18). 

F’ = ~ U ~ U , ,  
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